
17th Telecommunications forum TELFOR 2009 Serbia, Belgrade, November 24-26, 2009.

Abstract — Contiki is a fully optimized, lightweight, event-

driven operating system developed for wireless sensor

networks. It covers all major aspects of WSN operating

systems, such as: processes (proto-threads), process

interactions, communication stack and file system. However,

Contiki OS lacks well defined driver structure. This paper

proposes driver architecture for serial port devices. This

architecture is based on object oriented approach and

provides standard application interface enhanced with the

great flexibility and code reuse.

Keywords — contiki OS, device driver, node, serial port

driver, wireless sensor networks

I. INTRODUCTION

Wireless sensor networks (WSN) are composed of a

large number of autonomous tiny sensor devices with

wireless communication capabilities for exchanging

acquired information. The sensor devices are often

severely resource constrained. An on-board battery or solar

panel can only supply limited amounts of power.

Moreover, the small physical size and low per-device cost

limit the complexity of the system. Another constraint that

opposes all mentioned is achieving fast system

development time.

Considering all above mentioned demands, Swedish

Institute for computer science has developed Contiki

operating system (OS) [1]. Contiki kernel and libraries

implement majority of features needed for functioning of

the WSN node [2].

A. Contiki OS theory of operation

Contiki is multi-tasking operating system, especially

designed for microcontrollers with small amount of

memory, which are used in networked embedded systems

and wireless sensor networks. A typical Contiki

configuration needs 2 kilobytes of RAM and 40 kilobytes

of ROM.

This work was supported by the Ministry of Science of Republic of

Serbia, grant TR-11022 WSN and Remote Sensing – Foundations of

Modern Agricultural Infrastructure.

M. N. Oklobdžija, Institute Mihajlo Pupin, Volgina 15, 11060

Belgrade, Serbia; (e-mail: milan.oklobdzija@institutepupin.com).

M. V. Nikolić, Institute Mihajlo Pupin, Volgina 15, 11060 Belgrade,

Serbia; (e-mail: marko.nikolic@institutepupin.com).

V. B. Kovačević, Institute Mihajlo Pupin, Volgina 15, 11060

Belgrade, Serbia; (e-mail: vladimir.kovacevic@institutepupin.com).

Contiki is written in the C programming language. It is

freely available as open source under a BSD-style license.

The main system parts are: kernel, libraries, program

loader, and a set of processes. It contains all basic modules

and features for the network node functioning.

Contiki was the first OS which introduced IP

communication in low-power sensor networks [3]. Two

communication stacks are available: micro IP and Rime.

Micro IP is a small RFC-compliant TCP/IP stack which

enables Contiki based system to communicate over the

Internet. Rime is a lightweight communication stack

designed especially for low-power radios.

B. Contiki kernel

Event driven programming model is widely used in

resource constrained systems. “This approach is natural for

reactive processing and for interfacing with hardware, but

complicates sequencing high-level operations, as a

logically blocking sequence must be written in a state-

machine style” [4]. Contiki OS overcomes this drawback

by introducing concept of proto-threads [5].

The kernel is event-driven, based on a lightweight event

scheduler that dispatches events to running processes

(proto-threads). Proto-threads offer almost the same

functionality as the real thread, and they are specially

designed for memory constrained system. Proto-thread

does not have its own stack, but shares the same stack with

the other proto-threads. Optional library for preemptive

multi-tasking is also part of the Contiki OS.

Inter-process communication is achieved by posting

events, which can be asynchronous or synchronous.

Asynchronous events are queued by the kernel and

submitted to the target process some time later.

Synchronous events cause the target process to be

scheduled immediately. Kernel function process_post is

used for posting asynchronous event, while function

process_post_synch posts synchronous event to the desired

target process [6]. The kernel does not preempt a process

once it has been scheduled.

The Contiki kernel also provides a polling mechanism.

Process polling has higher priority than posting an

asynchronous event. Function process_poll performs

process polling. It is usually called in interrupt routines.

C. Motivation

However, the Contiki OS lacks well-defined and

structured driver architecture. There is no standard driver

Serial Port Device Driver for

Contiki Operating System

Milan Oklobdžija, Marko Nikolić, Vladimir Kovačević

1327

interface and it is different for each device.

The kernel does not provide a hardware abstraction

layer, thus drivers and applications communicate directly

with the hardware [1].

II. PROPOSED DRIVER ARCHITECTURE

Serial interface is the most common way of

communication between MCU and the other mote

components (sensors, external memory, or RF transceiver).

Thus, in this paper, special attention is devoted to the serial

port device driver.

First, application layer is completely separated from the

serial port device driver, then the driver is divided into a

two sub-layers:

• external device driver (EDD) sub-layer

• serial port driver (SPD) sub-layer

EDD is a higher driver sub-layer and its function is to

control external device through SPD interface. SPD is

lower driver sub-layer. It is independent from a specific

external device. This driver architecture concept provides

great flexibility in case of hardware changes.

The proposed driver architecture is designed to fulfill

several demands:

• separation of EDD and serial port driver

• serial port driver interface should not depend on

serial interface mode

• serial ports must use interrupts for data exchange

in order to avoid process blocking

• minimal overhead in the serial port interrupt

routines

• providing reliable high speed serial

communication with external device.

These demands can be achieved by assigning the single

process (proto-thread) to all serial port drivers (serial port

event process) and one process to each EDD. This process

is introduced as adaptation layer to Contiki OS. Serial port

event process checks if there is a new event at any serial

port (new byte received or data packet sent) and informs

EDD process which uses that serial port. EDD process

accepts and processes application messages. It then

forwards processed messages to the serial port driver

(Fig. 1). In the opposite direction, EDD process parses

bytes received from serial port driver and, after reception

of complete message, sends processed message to the

application. EDD and serial port driver exchange data

through circular buffers. There is one circular buffer for

reception and one circular buffer for transmission per

EDD. Writing data to transmit circular buffer is interrupt-

protected (interrupts are disabled). Reading data from

receive circular buffer is protected in the same way.

During system initialization EDD should be created.

Application assigns all the resources needed for EDD, such

as: serial port, general purpose input/output pins and

memory resources (for circular buffers). Function that

creates EDD performs creation of circular buffers, serial

port initialization and binds EDD and serial port driver.

A. Data Flow from the Application to the External

Device

Complete data flow from the application to the external

device is shown in Fig. 1.

Serial port HW

Transmit interrupt

routine

Transmit circular

buffer

SERIAL PORT

DRIVER (SPD)

EXTERNAL

DEVICE

DRIVER

(EDD)

APPLICATION

Linear buffer

process_poll
Serial port

event process

process_post

EDD process

read

write

read

process_post
Application

process

write

process_post

buffer

free

write

SRL_send

Fig. 1. Data flow from the application to external device

Application sends message to EDD by calling

process_post function, which is part of OS kernel [6]. The

arguments of this function are: pointer to EDD process,

unique code representing application message, and pointer

to the linear buffer containing message, respectively. EDD

process performs message formatting depending on

specific external device. Formatted message is then placed

in the transmit circular buffer. After that, transmit cycle is

initiated by calling serial port driver function SRL_send.

This function has two arguments: serial port number and

number of bytes to be sent. Inside SRL_send function,

transmit interrupt is enabled for UART or SPI master

mode of serial communication, while start condition is

generated for I2C master mode. Transmit interrupt service

routine reads one byte from transmit circular buffer and

writes it to the serial port transmit buffer. After sending

given number of bytes, appropriate serial event flag in

serial driver object is set representing event “data packet

sent,” and process_poll function is called with pointer to

serial port event process as only argument. When serial

port event process executes, it sends appropriate message

(according to serial port event flags) to EDD process

bound to this serial port. Message is sent by using

process_post function with following arguments: pointer to

EDD process, unique code representing “data packet sent”

event and NULL pointer. EDD process then informs

application process by posting “data packet sent” event to

it.

1328

B. Data Flow from the External Device to the

Application

Complete data flow from the external device to the

application is shown in Fig. 2.

Receive interrupt service routine reads byte received

from the external device and writes it to the receive

circular buffer. If receive circular buffer was empty before

byte reception, process_poll function is called with pointer

to serial port event process as the only argument. Also,

appropriate serial event flag in serial driver object is set

representing “new data received” event. With conditional

process_poll call, we avoid system message aggregation

when they can not be processed immediately.

When serial port event process executes, it sends

appropriate message (according to serial port event flags)

to EDD process bound to this serial port. Message is sent

by using process_post function with following arguments:

pointer to EDD process, unique code representing “new

data received” event and NULL pointer.

When EDD process is activated, it reads new data from

receive circular buffer and performs data parsing. When

whole message is received and processed it is sent to the

application process. Only one message is processed at the

time, even if several messages are received from the

external device. In that case, EDD process has to post the

same event to itself, before process exit. In this way long

retention in one process is avoided.

Serial port hardware

Receive interrupt

routine

Receive circular

buffer

SERIAL PORT

DRIVER (SPD)

EXTERNAL

DEVICE

DRIVER

(EDD)

APPLICATION

Linear buffer

process_poll
Serial port

event process

process_postEDD process

read

write

write

process_post

Application

process

buffer allocation

read

Fig. 2. Data flow from external device to the application

III. IMPLEMENTATION AND RESULTS

Proposed driver architecture for Contiki OS is

implemented on a TI MSP430F5438 microcontroller. The

Texas Instruments MSP430F5xx family of ultra low power

microcontrollers supports all standard serial interface

modes (UART, SPI and I2C) by just one configurable

hardware module - USCI (Universal Serial Communication

Interface) [7]. USCI module consists of two parts:

USCI_A and USCI_B. USCI_A supports UART and SPI

serial mode, while USCI_B supports I2C and SPI serial

mode. Microcontrollers from MSP430F5xx family have

different number of USCI modules (up to four identical

USCI modules [8]). USCI module also exists in the older

MSP430F2xx and MSP430F4xx families. Unique serial

port driver (USCI driver) can be used for all those

MSP430 microcontrollers, which have USCI modules,

with negligible changes.

A. Code Description

Serial port driver (SPD) object is assigned to each serial

port. SPD object contains all information about serial port

state. It is not a real object and only represents abstraction

consisting of the set of attributes and functions (separated

from the attributes). SPD functions are unique for all SPD

objects. They can be divided into two groups:

• general functions, independent of serial mode or

specific MCU,

• specific functions, which depend on serial mode
and specific MCU.

EDD communicates with SPD by calling SPD general

functions only. Inside SPD general functions, specific SPD

functions are called, depending on serial mode. Interrupt

routines also call SPD general function, which invokes

appropriate SPD specific function. General SPD functions

and specific SPD functions for each serial mode are placed

in different files.

SPD consists of the following functions:

SRL_create,

SRL_control,

SRL_sendData,

SRL_recvData,

SRL_sendRecvData,

SRL_processEvt,

SRL_processRxInt and

SRL_processTxInt.

For their operation these functions use SPD object that

resides in RAM and consists of following attributes:

- mode of serial communication (UART, I2C master,

I2C slave, SPI master or SPI slave)

- serial port clock source

- serial port clock frequency

- bitrate

- pointer to EDD process

- pointer to transmit circular buffer

- number of bytes to send

- pointer to receive circular buffer

- number of bytes to receive (I2C mode only)

- event status byte (each bit represents specific serial

port event)

General function SRL_create creates SPD object and

binds it with EDD. Function also performs initialization of

serial port by using serial port settings structure placed in

the ROM. Arguments of SRL_create function are: serial

port ID, pointer to serial port settings structure, pointer to

EDD process and pointers to EDD receive and transmit

circular buffers. SRL_create checks if the desired mode is

1329

supported by hardware and then calls specific functions for

serial port initialization. Multiple initialization of the same

serial port is prevented. Different functions are called for

different communication mode (UART, I2C or SPI).

Serial port parameters such as bitrate and parity can be

changed in run-time by calling general function

SRL_control. Arguments of SRL_control function are:

serial port ID, command and command arguments.

SRL_sendData is called from EDD process in order to

send message to the external serial port device. Function

argumets are: serial port ID and number of bytes to send.

EDD writes the message in transmit circular buffer before

calling this function.

Functions SRL_recvData and SRL_sendRecvData are

used only in I2C master mode. By calling SRL_recvData

function EDD process reads given number of bytes from

external device. Function arguments are: serial port ID and

number of bytes to be read. SRL_sendRecvData performs

I2C write/read cycle. Its arguments are: serial port ID,

number of bytes to send and number of bytes to be read.

Operations performed by following functions are

described in Section II. in more detail. Processing of serial

port events is performed by SRL_processEvt function. This

function is called from serial port event process. It has a

single argument – serial port ID. Functions

SRL_processRxInt and SRL_processTxInt are called from

serial port receive and transmit interrupt routines,

respectively. They both have single argument – serial port

ID.

B. Results and Performance

The driver code was developed and tested on the Texas

Instruments MSP-EXP430F5438 experimenter board. SPD

code was tested by using digital loop first. It was possible

in case of UART and SPI serial mode. For I2C master

mode driver code was tested using separate MCU with

code that emulated slave device with I2C serial interface.

After that, serial communication with PC was tested

using several instances of SPD simultaneously.

Code footprint is presented in Table 1.

TABLE 1: SERIAL PORT DRIVER CODE FOOTPRINT.

Code Segments ROM used (Bytes)

UART mode 602

SPI mode 656

I2C mode 636

General 1824

Total 3718

Usage of RAM is 31 byte per serial port instance with 6

bytes of memory common for all instances.

Used bit-rate was up to 115200 bps for continuous

transmission and reception. With CPU clock at 12MHz,

three serial ports can perform simultaneous transmission

and reception at 57600 bps bit-rate, with simple data

processing. However, higher speed can be achieved when

data is transmitted and received in the burst regime. In this

case, size of receive circular buffers must be enough to

accept all data.

For the test purpose, simple and fully functional EDD

was developed.

C. Benefits of the Proposed Driver Architecture

The driver architecture proposed in this paper has

several significant benefits. First of all, the application is

separated from the drivers. This approach enables easier

modifications of application software. Two sub-layer

driver approach provides the great flexibility in case of

hardware design changes. For example, if specific external

device is replaced, it will be necessary to modify only

EDD. On the other side, if MCU is changed, EDD will be

retained, while SPD will have to be written for the new

type of MCU. Both driver sub-layers have universal

interface.

Separation of platform dependent and independent code

is also provided.

Small code footprint is achieved, because all driver

instances share the same functions, using principles of the

object-oriented programming.

Maximal interrupt routine overhead is fixed and

independent of specific application and communication

protocol. Thus, high communication speed is achieved.

IV. CONCLUSION

Introduction of presented driver architecture in Contiki

OS reduces application development time, both application

and driver code footprint and increases system reliability.

This paper is focused on the serial interface. However,

its main principles can be generalized for any type of MCU

peripheral connected to the external device.

The results and contribution from this paper will be

proposed to Contiki on-line community for becoming the

part of the later versions of the Contiki OS.

REFERENCES

[1] Adam Dunkels, Bjorn Gronvall and Thiemo Voigt, “Contiki - a

Lightweight and Flexible Operating System for Tiny Networked

Sensors”, Swedish Institute of Computer Science, 2004.

[2] Fredrik Osterlind, Adam Dunkels, “Contiki Programming Course:

Hands-On Session Notes”, Swedish Institute of Computer Science,

Siena, July 2009

[3] Adam Dunkels, “Towards TCP/IP for Wireless Sensor Networks”,

Swedish Institute of Computer Science, March 2005

[4] P. Levis, S. Madden, D. Gay, J. Polastre, R. Szewczyk, A. Woo, E.

Brewer, and D. Culler, “The Emergence of Networking

Abstractions and Techniques in TinyOS”, NSDI 2004

[5] Adam Dunkels, Oliver Schmidt, Thiemo Voigt, Muneeb Ali,

“Protothreads: Simplifying Event-Driven Programming of

Memory-Constrained Embedded Systems, Swedish Institute of

Computer Science, Box 1263, SE-16429 Kista, Sweden, 2005

[6] Adam Dunkels: Contiki OS on-line documentation, 2009,

Available: http://www.sics.se/~adam/contiki/docs/

[7] Texas Instruments: SLAU208C, MSP430F5xx Family User’s

Guide, June 2008 - revised February 2009,

Available: http://www.ti.com

[8] Texas Instruments: SLAS612A, MSP430F543x Data Sheet,

December 2008 - revised January 2009,

Available: http://www.ti.com

1330

